Curation Tutorial

After spike sorting and computing quality metrics, you can automatically curate the spike sorting output using the quality metrics that you have calculated.

Import the modules and/or functions necessary from spikeinterface

import spikeinterface.core as si

Let’s generate a simulated dataset, and imagine that the ground-truth sorting is in fact the output of a sorter.

recording, sorting = si.generate_ground_truth_recording()
print(recording)
print(sorting)
GroundTruthRecording (InjectTemplatesRecording): 4 channels - 25.0kHz - 1 segments
                      250,000 samples - 10.00s - float32 dtype - 3.81 MiB
GroundTruthSorting (NumpySorting): 10 units - 1 segments - 25.0kHz

Create SortingAnalyzer

For this example, we will need a SortingAnalyzer and some extensions to be computed first

analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory")
analyzer.compute(["random_spikes", "waveforms", "templates", "noise_levels"])

analyzer.compute("principal_components", n_components=3, mode="by_channel_local")
print(analyzer)
estimate_sparsity (no parallelization):   0%|          | 0/10 [00:00<?, ?it/s]
estimate_sparsity (no parallelization): 100%|██████████| 10/10 [00:00<00:00, 424.08it/s]

compute_waveforms (no parallelization):   0%|          | 0/10 [00:00<?, ?it/s]
compute_waveforms (no parallelization): 100%|██████████| 10/10 [00:00<00:00, 279.61it/s]

noise_level (no parallelization):   0%|          | 0/20 [00:00<?, ?it/s]
noise_level (no parallelization): 100%|██████████| 20/20 [00:00<00:00, 267.46it/s]

Fitting PCA:   0%|          | 0/10 [00:00<?, ?it/s]
Fitting PCA: 100%|██████████| 10/10 [00:00<00:00, 138.87it/s]

Projecting waveforms:   0%|          | 0/10 [00:00<?, ?it/s]
Projecting waveforms: 100%|██████████| 10/10 [00:00<00:00, 1352.70it/s]
SortingAnalyzer: 4 channels - 10 units - 1 segments - memory - sparse - has recording
Loaded 5 extensions: random_spikes, waveforms, templates, noise_levels, principal_components

Then we compute some quality metrics:

metrics_ext = analyzer.compute("quality_metrics", metric_names=["snr", "isi_violation", "nearest_neighbor"])
metrics = metrics_ext.get_data()
print(metrics)
         snr  isi_violations_ratio  ...  nn_hit_rate  nn_miss_rate
0  25.668774                   0.0  ...     0.901935      0.005306
1   7.958497                   0.0  ...     0.761963      0.028021
2  22.444027                   0.0  ...     0.865385      0.015339
3  29.291918                   0.0  ...     0.885294      0.007267
4  17.477671                   0.0  ...     0.871724      0.007023
5  11.764989                   0.0  ...     0.710811      0.031232
6  13.484159                   0.0  ...     0.795652      0.032751
7  19.166367                   0.0  ...     0.820134      0.023184
8   9.034860                   0.0  ...     0.765680      0.034698
9  13.361816                   0.0  ...     0.790850      0.020309

[10 rows x 5 columns]

We can now threshold each quality metric and select units based on some rules.

The easiest and most intuitive way is to use boolean masking with a dataframe.

Then create a list of unit ids that we want to keep

keep_mask = (metrics["snr"] > 7.5) & (metrics["isi_violations_ratio"] < 0.2) & (metrics["nn_hit_rate"] > 0.80)
print(keep_mask)

keep_unit_ids = keep_mask[keep_mask].index.values
keep_unit_ids = [unit_id for unit_id in keep_unit_ids]
print(keep_unit_ids)
0     True
1    False
2     True
3     True
4     True
5    False
6    False
7     True
8    False
9    False
dtype: bool
['0', '2', '3', '4', '7']

And now let’s create a sorting that contains only curated units and save it.

curated_sorting = sorting.select_units(keep_unit_ids)
print(curated_sorting)


curated_sorting.save(folder="curated_sorting", overwrite=True)
GroundTruthSorting (UnitsSelectionSorting): 5 units - 1 segments - 25.0kHz
NumpyFolder (NumpyFolderSorting): 5 units - 1 segments - 25.0kHz
Unit IDs
    ['0' '2' '3' '4' '7']
Annotations
  • name : GroundTruthSorting
Properties
    gt_unit_locations[[23.508749 -9.353754 22.227774 ] [ 5.3026743 27.80848 30.409075 ] [29.101631 22.63506 13.088867 ] [-3.940308 0.6412099 12.723541 ] [26.846928 21.69441 36.67017 ]]


We can also save the analyzer with only theses units

clean_analyzer = analyzer.select_units(unit_ids=keep_unit_ids, format="zarr", folder="clean_analyzer")

print(clean_analyzer)
SortingAnalyzer: 4 channels - 5 units - 1 segments - zarr - sparse - has recording
Loaded 6 extensions: random_spikes, waveforms, templates, noise_levels, principal_components, quality_metrics

Total running time of the script: (0 minutes 0.614 seconds)

Gallery generated by Sphinx-Gallery